re-added file
[swftools.git] / lib / art / art_vpath_bpath.c
1 /* Libart_LGPL - library of basic graphic primitives
2  * Copyright (C) 1998 Raph Levien
3  *
4  * This library is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU Library General Public
6  * License as published by the Free Software Foundation; either
7  * version 2 of the License, or (at your option) any later version.
8  *
9  * This library is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * Library General Public License for more details.
13  *
14  * You should have received a copy of the GNU Library General Public
15  * License along with this library; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 02111-1307, USA.
18  */
19
20 /* Basic constructors and operations for bezier paths */
21
22 #include "config.h"
23 #include "art_vpath_bpath.h"
24
25 #include <math.h>
26
27 #include "art_misc.h"
28
29 #include "art_bpath.h"
30 #include "art_vpath.h"
31
32 /* p must be allocated 2^level points. */
33
34 /* level must be >= 1 */
35 ArtPoint *
36 art_bezier_to_vec (double x0, double y0,
37                    double x1, double y1,
38                    double x2, double y2,
39                    double x3, double y3,
40                    ArtPoint *p,
41                    int level)
42 {
43   double x_m, y_m;
44
45 #ifdef VERBOSE
46   printf ("bezier_to_vec: %g,%g %g,%g %g,%g %g,%g %d\n",
47           x0, y0, x1, y1, x2, y2, x3, y3, level);
48 #endif
49   if (level == 1) {
50     x_m = (x0 + 3 * (x1 + x2) + x3) * 0.125;
51     y_m = (y0 + 3 * (y1 + y2) + y3) * 0.125;
52     p->x = x_m;
53     p->y = y_m;
54     p++;
55     p->x = x3;
56     p->y = y3;
57     p++;
58 #ifdef VERBOSE
59     printf ("-> (%g, %g) -> (%g, %g)\n", x_m, y_m, x3, y3);
60 #endif
61   } else {
62     double xa1, ya1;
63     double xa2, ya2;
64     double xb1, yb1;
65     double xb2, yb2;
66
67     xa1 = (x0 + x1) * 0.5;
68     ya1 = (y0 + y1) * 0.5;
69     xa2 = (x0 + 2 * x1 + x2) * 0.25;
70     ya2 = (y0 + 2 * y1 + y2) * 0.25;
71     xb1 = (x1 + 2 * x2 + x3) * 0.25;
72     yb1 = (y1 + 2 * y2 + y3) * 0.25;
73     xb2 = (x2 + x3) * 0.5;
74     yb2 = (y2 + y3) * 0.5;
75     x_m = (xa2 + xb1) * 0.5;
76     y_m = (ya2 + yb1) * 0.5;
77 #ifdef VERBOSE
78     printf ("%g,%g %g,%g %g,%g %g,%g\n", xa1, ya1, xa2, ya2,
79             xb1, yb1, xb2, yb2);
80 #endif
81     p = art_bezier_to_vec (x0, y0, xa1, ya1, xa2, ya2, x_m, y_m, p, level - 1);
82     p = art_bezier_to_vec (x_m, y_m, xb1, yb1, xb2, yb2, x3, y3, p, level - 1);
83   }
84   return p;
85 }
86
87 #define RENDER_LEVEL 4
88 #define RENDER_SIZE (1 << (RENDER_LEVEL))
89
90 /**
91  * art_vpath_render_bez: Render a bezier segment into the vpath. 
92  * @p_vpath: Where the pointer to the #ArtVpath structure is stored.
93  * @pn_points: Pointer to the number of points in *@p_vpath.
94  * @pn_points_max: Pointer to the number of points allocated.
95  * @x0: X coordinate of starting bezier point.
96  * @y0: Y coordinate of starting bezier point.
97  * @x1: X coordinate of first bezier control point.
98  * @y1: Y coordinate of first bezier control point.
99  * @x2: X coordinate of second bezier control point.
100  * @y2: Y coordinate of second bezier control point.
101  * @x3: X coordinate of ending bezier point.
102  * @y3: Y coordinate of ending bezier point.
103  * @flatness: Flatness control.
104  *
105  * Renders a bezier segment into the vector path, reallocating and
106  * updating *@p_vpath and *@pn_vpath_max as necessary. *@pn_vpath is
107  * incremented by the number of vector points added.
108  *
109  * This step includes (@x0, @y0) but not (@x3, @y3).
110  *
111  * The @flatness argument guides the amount of subdivision. The Adobe
112  * PostScript reference manual defines flatness as the maximum
113  * deviation between the any point on the vpath approximation and the
114  * corresponding point on the "true" curve, and we follow this
115  * definition here. A value of 0.25 should ensure high quality for aa
116  * rendering.
117 **/
118 static void
119 art_vpath_render_bez (ArtVpath **p_vpath, int *pn, int *pn_max,
120                       double x0, double y0,
121                       double x1, double y1,
122                       double x2, double y2,
123                       double x3, double y3,
124                       double flatness)
125 {
126   double x3_0, y3_0;
127   double z3_0_dot;
128   double z1_dot, z2_dot;
129   double z1_perp, z2_perp;
130   double max_perp_sq;
131
132   double x_m, y_m;
133   double xa1, ya1;
134   double xa2, ya2;
135   double xb1, yb1;
136   double xb2, yb2;
137
138   /* It's possible to optimize this routine a fair amount.
139
140      First, once the _dot conditions are met, they will also be met in
141      all further subdivisions. So we might recurse to a different
142      routine that only checks the _perp conditions.
143
144      Second, the distance _should_ decrease according to fairly
145      predictable rules (a factor of 4 with each subdivision). So it might
146      be possible to note that the distance is within a factor of 4 of
147      acceptable, and subdivide once. But proving this might be hard.
148
149      Third, at the last subdivision, x_m and y_m can be computed more
150      expeditiously (as in the routine above).
151
152      Finally, if we were able to subdivide by, say 2 or 3, this would
153      allow considerably finer-grain control, i.e. fewer points for the
154      same flatness tolerance. This would speed things up downstream.
155
156      In any case, this routine is unlikely to be the bottleneck. It's
157      just that I have this undying quest for more speed...
158
159   */
160
161   x3_0 = x3 - x0;
162   y3_0 = y3 - y0;
163
164   /* z3_0_dot is dist z0-z3 squared */
165   z3_0_dot = x3_0 * x3_0 + y3_0 * y3_0;
166
167   if (z3_0_dot < 0.001)
168     {
169       /* if start and end point are almost identical, the flatness tests
170        * don't work properly, so fall back on testing whether both of
171        * the other two control points are the same as the start point,
172        * too.
173        */
174       if (hypot(x1 - x0, y1 - y0) < 0.001
175           && hypot(x2 - x0, y2 - y0) < 0.001)
176           goto nosubdivide;
177       else
178           goto subdivide;
179     }
180
181   /* we can avoid subdivision if:
182
183      z1 has distance no more than flatness from the z0-z3 line
184
185      z1 is no more z0'ward than flatness past z0-z3
186
187      z1 is more z0'ward than z3'ward on the line traversing z0-z3
188
189      and correspondingly for z2 */
190
191   /* perp is distance from line, multiplied by dist z0-z3 */
192   max_perp_sq = flatness * flatness * z3_0_dot;
193
194   z1_perp = (y1 - y0) * x3_0 - (x1 - x0) * y3_0;
195   if (z1_perp * z1_perp > max_perp_sq)
196     goto subdivide;
197
198   z2_perp = (y3 - y2) * x3_0 - (x3 - x2) * y3_0;
199   if (z2_perp * z2_perp > max_perp_sq)
200     goto subdivide;
201
202   z1_dot = (x1 - x0) * x3_0 + (y1 - y0) * y3_0;
203   if (z1_dot < 0 && z1_dot * z1_dot > max_perp_sq)
204     goto subdivide;
205
206   z2_dot = (x3 - x2) * x3_0 + (y3 - y2) * y3_0;
207   if (z2_dot < 0 && z2_dot * z2_dot > max_perp_sq)
208     goto subdivide;
209
210   if (z1_dot + z1_dot > z3_0_dot)
211     goto subdivide;
212
213   if (z2_dot + z2_dot > z3_0_dot)
214     goto subdivide;
215
216       
217  nosubdivide:
218   /* don't subdivide */
219   art_vpath_add_point (p_vpath, pn, pn_max,
220                        ART_LINETO, x3, y3);
221   return;
222
223  subdivide:
224
225   xa1 = (x0 + x1) * 0.5;
226   ya1 = (y0 + y1) * 0.5;
227   xa2 = (x0 + 2 * x1 + x2) * 0.25;
228   ya2 = (y0 + 2 * y1 + y2) * 0.25;
229   xb1 = (x1 + 2 * x2 + x3) * 0.25;
230   yb1 = (y1 + 2 * y2 + y3) * 0.25;
231   xb2 = (x2 + x3) * 0.5;
232   yb2 = (y2 + y3) * 0.5;
233   x_m = (xa2 + xb1) * 0.5;
234   y_m = (ya2 + yb1) * 0.5;
235 #ifdef VERBOSE
236   printf ("%g,%g %g,%g %g,%g %g,%g\n", xa1, ya1, xa2, ya2,
237           xb1, yb1, xb2, yb2);
238 #endif
239   art_vpath_render_bez (p_vpath, pn, pn_max,
240                         x0, y0, xa1, ya1, xa2, ya2, x_m, y_m, flatness);
241   art_vpath_render_bez (p_vpath, pn, pn_max,
242                         x_m, y_m, xb1, yb1, xb2, yb2, x3, y3, flatness);
243 }
244
245 /**
246  * art_bez_path_to_vec: Create vpath from bezier path.
247  * @bez: Bezier path.
248  * @flatness: Flatness control.
249  *
250  * Creates a vector path closely approximating the bezier path defined by
251  * @bez. The @flatness argument controls the amount of subdivision. In
252  * general, the resulting vpath deviates by at most @flatness pixels
253  * from the "ideal" path described by @bez.
254  *
255  * Return value: Newly allocated vpath.
256  **/
257 ArtVpath *
258 art_bez_path_to_vec (const ArtBpath *bez, double flatness)
259 {
260   ArtVpath *vec;
261   int vec_n, vec_n_max;
262   int bez_index;
263   double x, y;
264
265   vec_n = 0;
266   vec_n_max = RENDER_SIZE;
267   vec = art_new (ArtVpath, vec_n_max);
268
269   /* Initialization is unnecessary because of the precondition that the
270      bezier path does not begin with LINETO or CURVETO, but is here
271      to make the code warning-free. */
272   x = 0;
273   y = 0;
274
275   bez_index = 0;
276   do
277     {
278 #ifdef VERBOSE
279       printf ("%s %g %g\n",
280               bez[bez_index].code == ART_CURVETO ? "curveto" :
281               bez[bez_index].code == ART_LINETO ? "lineto" :
282               bez[bez_index].code == ART_MOVETO ? "moveto" :
283               bez[bez_index].code == ART_MOVETO_OPEN ? "moveto-open" :
284               "end", bez[bez_index].x3, bez[bez_index].y3);
285 #endif
286       /* make sure space for at least one more code */
287       if (vec_n >= vec_n_max)
288         art_expand (vec, ArtVpath, vec_n_max);
289       switch (bez[bez_index].code)
290         {
291         case ART_MOVETO_OPEN:
292         case ART_MOVETO:
293         case ART_LINETO:
294           x = bez[bez_index].x3;
295           y = bez[bez_index].y3;
296           vec[vec_n].code = bez[bez_index].code;
297           vec[vec_n].x = x;
298           vec[vec_n].y = y;
299           vec_n++;
300           break;
301         case ART_END:
302           vec[vec_n].code = bez[bez_index].code;
303           vec[vec_n].x = 0;
304           vec[vec_n].y = 0;
305           vec_n++;
306           break;
307         case ART_CURVETO:
308 #ifdef VERBOSE
309           printf ("%g,%g %g,%g %g,%g %g,%g\n", x, y,
310                          bez[bez_index].x1, bez[bez_index].y1,
311                          bez[bez_index].x2, bez[bez_index].y2,
312                          bez[bez_index].x3, bez[bez_index].y3);
313 #endif
314           art_vpath_render_bez (&vec, &vec_n, &vec_n_max,
315                                 x, y,
316                                 bez[bez_index].x1, bez[bez_index].y1,
317                                 bez[bez_index].x2, bez[bez_index].y2,
318                                 bez[bez_index].x3, bez[bez_index].y3,
319                                 flatness);
320           x = bez[bez_index].x3;
321           y = bez[bez_index].y3;
322           break;
323         }
324     }
325   while (bez[bez_index++].code != ART_END);
326   return vec;
327 }
328