3 Part of the swftools package.
5 Copyright (c) 2001,2002,2003,2004 Matthias Kramm <kramm@quiss.org>
7 This program is rfx_free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the rfx_free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the rfx_free Software
19 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
32 // ------------------------------- malloc, alloc routines ---------------------
35 char* strdup_n(const char*str, int size)
37 char*m = (char*)rfx_alloc(size+1);
43 char*qstrdup(const char*string)
45 return strdup(string);
47 char*qstrndup(const char*string, int len)
49 return strdup_n(string, len);
51 char* allocprintf(const char*format, ...)
54 va_start(arglist1, format);
56 int l = vsnprintf(&dummy, 1, format, arglist1);
60 va_start(arglist2, format);
61 char*buf = malloc(l+1);
62 vsnprintf(buf, l+1, format, arglist2);
67 // ------------------------------- mem_t --------------------------------------
69 void mem_init(mem_t*mem)
71 memset(mem, 0, sizeof(mem_t));
73 void mem_clear(mem_t*mem)
75 rfx_free(mem->buffer);mem->buffer = 0;
77 void mem_destroy(mem_t*mem)
82 static int mem_put_(mem_t*m,const void*data, int length, int null)
85 m->pos += length + (null?1:0);
87 int v1 = (m->pos+63)&~63;
88 int v2 = m->len + m->len / 2;
90 m->buffer = m->buffer?(char*)rfx_realloc(m->buffer,m->len):(char*)rfx_alloc(m->len);
92 assert(n+length <= m->len);
93 memcpy(&m->buffer[n], data, length);
95 m->buffer[n + length] = 0;
98 int mem_put(mem_t*m,void*data, int length)
100 return mem_put_(m, data, length, 0);
102 int mem_putstring(mem_t*m,string_t str)
104 return mem_put_(m, str.str, str.len, 1);
106 int mem_get(mem_t*m, void*data, int length)
108 if(m->read_pos + length > m->pos) {
109 length = m->pos - m->read_pos;
111 memcpy(data, m->buffer+m->read_pos, length);
112 m->read_pos += length;
116 // ------------------------------- ringbuffer_t -------------------------------
118 typedef struct _ringbuffer_internal_t
120 unsigned char*buffer;
124 } ringbuffer_internal_t;
126 void ringbuffer_init(ringbuffer_t*r)
128 ringbuffer_internal_t*i = (ringbuffer_internal_t*)rfx_calloc(sizeof(ringbuffer_internal_t));
129 memset(r, 0, sizeof(ringbuffer_t));
131 i->buffer = (unsigned char*)rfx_alloc(1024);
132 i->buffersize = 1024;
134 int ringbuffer_read(ringbuffer_t*r, void*buf, int len)
136 unsigned char* data = (unsigned char*)buf;
137 ringbuffer_internal_t*i = (ringbuffer_internal_t*)r->internal;
138 if(r->available < len)
142 if(i->readpos + len > i->buffersize) {
143 int read1 = i->buffersize-i->readpos;
144 memcpy(data, &i->buffer[i->readpos], read1);
145 memcpy(&data[read1], &i->buffer[0], len - read1);
146 i->readpos = len - read1;
148 memcpy(data, &i->buffer[i->readpos], len);
150 i->readpos %= i->buffersize;
155 void ringbuffer_put(ringbuffer_t*r, void*buf, int len)
157 unsigned char* data = (unsigned char*)buf;
158 ringbuffer_internal_t*i = (ringbuffer_internal_t*)r->internal;
160 if(i->buffersize - r->available < len)
163 int newbuffersize = i->buffersize;
164 int oldavailable = r->available;
165 newbuffersize*=3;newbuffersize/=2; /*grow at least by 50% each time */
167 if(newbuffersize < r->available + len)
168 newbuffersize = r->available + len + 1024;
170 buf2 = (unsigned char*)rfx_alloc(newbuffersize);
171 ringbuffer_read(r, buf2, r->available);
174 i->buffersize = newbuffersize;
176 i->writepos = oldavailable;
177 r->available = oldavailable;
179 if(i->writepos + len > i->buffersize) {
180 int read1 = i->buffersize-i->writepos;
181 memcpy(&i->buffer[i->writepos], data, read1);
182 memcpy(&i->buffer[0], &data[read1], len - read1);
183 i->writepos = len - read1;
185 memcpy(&i->buffer[i->writepos], data, len);
187 i->writepos %= i->buffersize;
191 void ringbuffer_clear(ringbuffer_t*r)
193 ringbuffer_internal_t*i = (ringbuffer_internal_t*)r->internal;
194 rfx_free(i->buffer);i->buffer = 0;
198 // ------------------------------- heap_t -------------------------------
200 void heap_init(heap_t*h,int n,int elem_size, int(*compare)(const void *, const void *))
202 memset(h, 0, sizeof(heap_t));
205 h->elem_size = elem_size;
206 h->compare = compare;
207 h->elements = (void**)rfx_calloc(n*sizeof(void*));
208 h->data = (char*)rfx_calloc(h->max_size*h->elem_size);
210 void heap_clear(heap_t*h)
212 rfx_free(h->elements);
216 #define HEAP_NODE_SMALLER(h,node1,node2) ((h)->compare((node1),(node2))>0)
218 static void up(heap_t*h, int node)
220 void*node_p = h->elements[node];
226 h->elements[node] = h->elements[parent];
227 } while(HEAP_NODE_SMALLER(h,h->elements[parent], node_p));
229 h->elements[node] = node_p;
231 static void down(heap_t*h, int node)
233 void*node_p = h->elements[node];
238 /* determine new child's position */
242 if(child+1 < h->size && HEAP_NODE_SMALLER(h,h->elements[child],h->elements[child+1])) // search for bigger child
245 h->elements[node] = h->elements[child];
246 } while(HEAP_NODE_SMALLER(h,node_p, h->elements[child]));
248 h->elements[node] = node_p;
250 void heap_put(heap_t*h, void*e)
253 memcpy(&h->data[pos*h->elem_size],e,h->elem_size);
254 h->elements[pos] = &h->data[pos];
257 int heap_size(heap_t*h)
261 void* heap_max(heap_t*h)
263 return h->elements[0];
265 void* heap_chopmax(heap_t*h)
267 void*p = h->elements[0];
268 h->elements[0] = h->elements[--h->size];
272 void heap_dump(heap_t*h, FILE*fi)
275 for(t=0;t<h->size;t++) {
277 for(s=0;s<=t;s=(s+1)*2-1) {
278 if(s==t) fprintf(fi,"\n");
280 //fprintf(fi,"%d ", h->elements[t]->x); //?
283 void** heap_flatten(heap_t*h)
285 void**nodes = (void**)rfx_alloc(h->size*sizeof(void*));
289 /*printf("Heap Size: %d\n", h->size);
290 heap_print(stdout, h);
292 *p++ = heap_chopmax(h);
297 // ------------------------------- trie --------------------------------------
301 return (trie_t*)rfx_calloc(sizeof(trie_t));
303 static char _trie_put(trielayer_t**t, unsigned const char*id, void*data)
306 (*t) = rfx_calloc(sizeof(trielayer_t));
307 (*t)->rest = (unsigned char*)strdup(id);
311 if((*t)->rest && (*t)->rest[0]) {
312 // make room: shift whatever's currently in here one node down
313 _trie_put(&(*t)->row[(*t)->rest[0]], (*t)->rest+1, (*t)->data);
317 return _trie_put(&(*t)->row[id[0]], id+1, data);
322 (*t)->rest = strdup("");
327 static char _trie_remove(trielayer_t*t, unsigned const char*id)
330 if(t->rest && !strcmp(t->rest, id)) {
342 static void trie_rollback_removes(trie_t*t, unsigned const char*id, void*data);
343 static void trie_rollback_adds(trie_t*t, unsigned const char*id, void*data);
345 void trie_put(trie_t*t, unsigned const char*id, void*data)
348 _trie_put(&t->start, id, data);
350 char contains = trie_contains(t, id);
351 void*olddata = contains?trie_lookup(t, id):0;
352 _trie_put(&t->start, id, data);
354 trie_rollback_adds(t, id, olddata);
356 trie_rollback_removes(t, id, data);
359 char trie_remove(trie_t*t, unsigned const char*id)
362 return _trie_remove(t->start, id);
364 void*olddata = trie_lookup(t, id);
365 char exists = _trie_remove(t->start, id);
367 trie_rollback_adds(t, id, olddata);
372 int trie_contains(trie_t*trie, unsigned const char*id)
374 trielayer_t*t = trie->start;
376 if(t->rest && !strcmp(t->rest, id))
384 void* trie_lookup(trie_t*trie, unsigned const char*id)
386 trielayer_t*t = trie->start;
388 if(t->rest && !strcmp(t->rest, id))
397 typedef struct _triememory {
398 const unsigned char*key;
401 struct _triememory*next;
404 typedef struct _trierollback {
406 struct _trierollback*prev;
409 static void trie_rollback_adds(trie_t*t, unsigned const char*id, void*data)
411 trierollback_t*rollback = (trierollback_t*)t->rollback;
412 triememory_t*m = (triememory_t*)rfx_calloc(sizeof(triememory_t));
416 m->next = rollback->ops;
419 static void trie_rollback_removes(trie_t*t, unsigned const char*id, void*data)
421 trierollback_t*rollback = (trierollback_t*)t->rollback;
422 triememory_t*m = (triememory_t*)rfx_calloc(sizeof(triememory_t));
426 m->next = rollback->ops;
430 void _trie_dump(trielayer_t*t, char*buffer, int pos)
436 _trie_dump(t->row[i], buffer, pos+1);
441 printf("%s%s %08x\n", buffer, t->rest, t->data);
445 void trie_dump(trie_t*t)
448 _trie_dump(t->start, buffer, 0);
452 void trie_remember(trie_t*t)
454 trierollback_t*old = (trierollback_t*)t->rollback;
455 t->rollback = (trierollback_t*)rfx_calloc(sizeof(trierollback_t));
456 ((trierollback_t*)t->rollback)->prev = old;
459 void trie_rollback(trie_t*t)
461 trierollback_t*rollback = (trierollback_t*)t->rollback;
463 fprintf(stderr, "Internal error: can't roll back this trie any further\n");
466 t->rollback = ((trierollback_t*)t->rollback)->prev;
468 triememory_t*op = rollback->ops;
470 triememory_t*next = op->next;
472 if(!_trie_remove(t->start, op->key)) {
473 fprintf(stderr, "Internal error: can't delete key %s in trie during rollback\n", op->key);
476 if(_trie_put(&t->start, op->key, op->data)) {
477 fprintf(stderr, "Internal error: overwrote key %s in trie during rollback\n", op->key);
486 // ------------------------------- crc32 --------------------------------------
487 static unsigned int*crc32 = 0;
488 static void crc32_init(void)
493 crc32= (unsigned int*)rfx_alloc(sizeof(unsigned int)*256);
494 for(t=0; t<256; t++) {
497 for (s = 0; s < 8; s++) {
498 c = (0xedb88320L*(c&1)) ^ (c >> 1);
503 // ------------------------------- string_t -----------------------------------
505 void string_set2(string_t*str, const char*text, int len)
510 void string_set(string_t*str, const char*text)
513 str->len = strlen(text);
519 string_t string_new(const char*text, int len)
526 string_t string_new2(const char*text)
530 s.len = strlen(text);
537 string_t* string_new3(const char*text, int len)
540 string_t*s = malloc(sizeof(string_t));
545 string_t*s = malloc(sizeof(string_t)+len+1);
547 s->str = (const char*)(s+1);
548 memcpy((char*)s->str, text, len);
549 ((char*)s->str)[len]=0;
553 string_t* string_new4(const char*text)
555 int l = strlen(text);
556 return string_new3(text, l);
559 void string_free(string_t*s)
564 if((string_t*)(s->str) == s+1) {
568 rfx_free((char*)(s->str));
573 char* string_cstr(string_t*str)
575 return strdup_n(str->str, str->len);
577 char* string_escape(string_t*str)
581 for(t=0;t<str->len;t++) {
587 char*s = malloc(len+1);
589 for(t=0;t<str->len;t++) {
590 if(str->str[t]<0x20) {
592 unsigned char c = str->str[t];
593 *p++ = "0123456789abcdef"[c>>4];
594 *p++ = "0123456789abcdef"[c&0x0f];
600 assert(p == &s[len+1]);
604 unsigned int crc32_add_byte(unsigned int checksum, unsigned char b)
608 return checksum>>8 ^ crc32[(b^checksum)&0xff];
610 unsigned int crc32_add_string(unsigned int checksum, const char*s)
617 checksum = checksum>>8 ^ crc32[(*s^checksum)&0xff];
623 unsigned int string_hash(const string_t*str)
626 unsigned int checksum = 0;
629 for(t=0;t<str->len;t++) {
630 checksum = checksum>>8 ^ crc32[(str->str[t]^checksum)&0xff];
634 unsigned int string_hash2(const char*str)
636 unsigned int checksum = 0;
641 checksum = checksum>>8 ^ crc32[(*p^checksum)&0xff];
646 unsigned int string_hash3(const char*str, int len)
651 return string_hash(&s);
653 void string_dup2(string_t*str, const char*text, int len)
656 str->str = strdup_n(text, len);
658 void string_dup(string_t*str, const char*text)
660 str->len = strlen(text);
661 str->str = strdup(text);
663 int string_equals(string_t*str, const char*text)
665 int l = strlen(text);
666 if(str->len == l && !memcmp(str->str, text, l))
670 int string_equals2(string_t*str, string_t*str2)
672 if(str->len == str2->len && !memcmp(str->str, str2->str, str->len))
677 // ------------------------------- stringarray_t ------------------------------
679 typedef struct _stringlist {
681 struct _stringlist*next;
684 typedef struct _stringarray_internal_t
690 } stringarray_internal_t;
692 void stringarray_init(stringarray_t*sa, int hashsize)
694 stringarray_internal_t*s;
696 sa->internal = (stringarray_internal_t*)rfx_calloc(sizeof(stringarray_internal_t));
697 s = (stringarray_internal_t*)sa->internal;
699 s->hash = rfx_calloc(sizeof(stringlist_t*)*hashsize);
700 s->hashsize = hashsize;
702 void stringarray_put(stringarray_t*sa, string_t str)
704 stringarray_internal_t*s = (stringarray_internal_t*)sa->internal;
706 int hash = string_hash(&str) % s->hashsize;
708 char*ss = string_cstr(&str);
709 mem_put(&s->pos, &ss, sizeof(char*));
711 stringlist_t*l = rfx_alloc(sizeof(stringlist_t));
713 l->next = s->hash[hash];
718 char* stringarray_at(stringarray_t*sa, int pos)
720 stringarray_internal_t*s = (stringarray_internal_t*)sa->internal;
722 if(pos<0 || pos>=s->num)
724 p = *(char**)&s->pos.buffer[pos*sizeof(char*)];
729 string_t stringarray_at2(stringarray_t*sa, int pos)
732 s.str = stringarray_at(sa, pos);
733 s.len = s.str?strlen(s.str):0;
736 static stringlist_t* stringlist_del(stringarray_t*sa, stringlist_t*l, int index)
739 stringlist_t*old = l;
741 if(index==l->index) {
743 memset(l, 0, sizeof(stringlist_t));
753 fprintf(stderr, "Internal error: did not find string %d in hash\n", index);
757 void stringarray_del(stringarray_t*sa, int pos)
759 stringarray_internal_t*s = (stringarray_internal_t*)sa->internal;
760 string_t str = stringarray_at2(sa, pos);
761 int hash = string_hash(&str) % s->hashsize;
762 s->hash[hash] = stringlist_del(sa, s->hash[hash], pos);
763 *(char**)&s->pos.buffer[pos*sizeof(char*)] = 0;
765 int stringarray_find(stringarray_t*sa, string_t* str)
767 stringarray_internal_t*s = (stringarray_internal_t*)sa->internal;
768 int hash = string_hash(str) % s->hashsize;
770 stringlist_t*l = s->hash[hash];
773 string_t s = stringarray_at2(sa, l->index);
774 if(string_equals2(str, &s)) {
781 void stringarray_clear(stringarray_t*sa)
783 stringarray_internal_t*s = (stringarray_internal_t*)sa->internal;
786 for(t=0;t<s->hashsize;t++) {
787 stringlist_t*l = s->hash[t];
789 stringlist_t*next = l->next;
790 memset(l, 0, sizeof(stringlist_t));
795 rfx_free(s->hash);s->hash=0;
798 void stringarray_destroy(stringarray_t*sa)
800 stringarray_clear(sa);
804 // ------------------------------- type_t -------------------------------
806 char ptr_equals(const void*o1, const void*o2)
810 unsigned int ptr_hash(const void*o)
812 return string_hash3((const char*)&o, sizeof(o));
814 void* ptr_dup(const void*o)
818 void ptr_free(void*o)
823 char charptr_equals(const void*o1, const void*o2)
827 return !strcmp(o1,o2);
829 unsigned int charptr_hash(const void*o)
833 return string_hash2(o);
835 void* charptr_dup(const void*o)
841 void charptr_free(void*o)
848 char stringstruct_equals(const void*o1, const void*o2)
852 string_t*s1 = (string_t*)o1;
853 string_t*s2 = (string_t*)o2;
854 int l = s1->len<s2->len?s1->len:s2->len;
855 int r = memcmp(s1->str, s2->str, l);
859 return s1->len==s2->len;
861 unsigned int stringstruct_hash(const void*o)
864 return string_hash(o);
866 string_t*string_dup3(string_t*o)
870 string_t*s = malloc(sizeof(string_t));
875 string_t*s = rfx_alloc(sizeof(string_t)+o->len+1);
877 s->str = (const char*)(s+1);
878 memcpy((char*)s->str, o->str, s->len);
879 ((char*)s->str)[s->len]=0;
882 void stringstruct_free(void*o)
895 type_t charptr_type = {
896 equals: charptr_equals,
902 type_t stringstruct_type = {
903 equals: stringstruct_equals,
904 hash: stringstruct_hash,
905 dup: (dup_func)string_dup3,
906 free: stringstruct_free,
909 // ------------------------------- dictionary_t -------------------------------
911 #define INITIAL_SIZE 1
913 static int max(int x, int y) {
919 dict_t*d = rfx_alloc(sizeof(dict_t));
920 dict_init(d, INITIAL_SIZE);
923 dict_t*dict_new2(type_t*t)
925 dict_t*d = rfx_alloc(sizeof(dict_t));
926 dict_init(d, INITIAL_SIZE);
930 void dict_init(dict_t*h, int size)
932 memset(h, 0, sizeof(dict_t));
934 h->slots = h->hashsize?(dictentry_t**)rfx_calloc(sizeof(dictentry_t*)*h->hashsize):0;
936 h->key_type = &charptr_type;
938 void dict_init2(dict_t*h, type_t*t, int size)
940 memset(h, 0, sizeof(dict_t));
942 h->slots = h->hashsize?(dictentry_t**)rfx_calloc(sizeof(dictentry_t*)*h->hashsize):0;
947 dict_t*dict_clone(dict_t*o)
949 dict_t*h = rfx_alloc(sizeof(dict_t));
950 memcpy(h, o, sizeof(dict_t));
951 h->slots = h->hashsize?(dictentry_t**)rfx_calloc(sizeof(dictentry_t*)*h->hashsize):0;
953 for(t=0;t<o->hashsize;t++) {
954 dictentry_t*e = o->slots[t];
956 dictentry_t*n = (dictentry_t*)rfx_alloc(sizeof(dictentry_t));
957 memcpy(n, e, sizeof(dictentry_t));
958 n->key = h->key_type->dup(e->key);
960 n->next = h->slots[t];
968 static void dict_expand(dict_t*h, int newlen)
970 assert(h->hashsize < newlen);
971 dictentry_t**newslots = (dictentry_t**)rfx_calloc(sizeof(dictentry_t*)*newlen);
973 for(t=0;t<h->hashsize;t++) {
974 dictentry_t*e = h->slots[t];
976 dictentry_t*next = e->next;
977 unsigned int newhash = e->hash%newlen;
978 e->next = newslots[newhash];
979 newslots[newhash] = e;
986 h->hashsize = newlen;
989 dictentry_t* dict_put(dict_t*h, const void*key, void* data)
991 unsigned int hash = h->key_type->hash(key);
992 dictentry_t*e = (dictentry_t*)rfx_alloc(sizeof(dictentry_t));
993 unsigned int hash2 = hash % h->hashsize;
995 e->key = h->key_type->dup(key);
996 e->hash = hash; //for resizing
997 e->next = h->slots[hash2];
1003 void dict_put2(dict_t*h, const char*s, void*data)
1005 assert(h->key_type == &charptr_type);
1006 dict_put(h, s, data);
1008 void dict_dump(dict_t*h, FILE*fi, const char*prefix)
1011 for(t=0;t<h->hashsize;t++) {
1012 dictentry_t*e = h->slots[t];
1014 if(h->key_type!=&charptr_type) {
1015 fprintf(fi, "%s%08x=%08x\n", prefix, e->key, e->data);
1017 fprintf(fi, "%s%s=%08x\n", prefix, e->key, e->data);
1024 int dict_count(dict_t*h)
1029 static inline dictentry_t* dict_do_lookup(dict_t*h, const void*key)
1035 unsigned int ohash = h->key_type->hash(key);
1036 unsigned int hash = ohash % h->hashsize;
1038 /* check first entry for match */
1039 dictentry_t*e = h->slots[hash];
1040 if(e && h->key_type->equals(e->key, key)) {
1046 /* if dict is 2/3 filled, double the size. Do
1047 this the first time we have to actually iterate
1048 through a slot to find our data */
1049 if(e && h->num*3 >= h->hashsize*2) {
1050 int newsize = h->hashsize;
1051 while(h->num*3 >= newsize*2) {
1052 newsize = newsize<15?15:(newsize+1)*2-1;
1054 dict_expand(h, newsize);
1055 hash = ohash % h->hashsize;
1057 if(e && h->key_type->equals(e->key, key)) {
1058 // omit move to front
1065 /* check subsequent entries for a match */
1066 dictentry_t*last = h->slots[hash];
1068 if(h->key_type->equals(e->key, key)) {
1069 /* move to front- makes a difference of about 10% in most applications */
1070 last->next = e->next;
1071 e->next = h->slots[hash];
1080 void* dict_lookup(dict_t*h, const void*key)
1082 dictentry_t*e = dict_do_lookup(h, key);
1087 char dict_contains(dict_t*h, const void*key)
1089 dictentry_t*e = dict_do_lookup(h, key);
1093 char dict_del(dict_t*h, const void*key)
1097 unsigned int hash = h->key_type->hash(key) % h->hashsize;
1098 dictentry_t*head = h->slots[hash];
1099 dictentry_t*e = head, *prev=0;
1101 if(h->key_type->equals(e->key, key)) {
1102 dictentry_t*next = e->next;
1103 rfx_free((void*)e->key);
1104 memset(e, 0, sizeof(dictentry_t));
1107 h->slots[hash] = next;
1121 dictentry_t* dict_get_slot(dict_t*h, const void*key)
1125 unsigned int ohash = h->key_type->hash(key);
1126 unsigned int hash = ohash % h->hashsize;
1127 return h->slots[hash];
1130 void dict_foreach_keyvalue(dict_t*h, void (*runFunction)(void*data, const void*key, void*val), void*data)
1133 for(t=0;t<h->hashsize;t++) {
1134 dictentry_t*e = h->slots[t];
1136 dictentry_t*next = e->next;
1138 runFunction(data, e->key, e->data);
1144 void dict_foreach_value(dict_t*h, void (*runFunction)(void*))
1147 for(t=0;t<h->hashsize;t++) {
1148 dictentry_t*e = h->slots[t];
1150 dictentry_t*next = e->next;
1152 runFunction(e->data);
1159 void dict_free_all(dict_t*h, char free_keys, void (*free_data_function)(void*))
1162 for(t=0;t<h->hashsize;t++) {
1163 dictentry_t*e = h->slots[t];
1165 dictentry_t*next = e->next;
1167 h->key_type->free(e->key);
1169 if(free_data_function) {
1170 free_data_function(e->data);
1172 memset(e, 0, sizeof(dictentry_t));
1179 memset(h, 0, sizeof(dict_t));
1182 void dict_clear_shallow(dict_t*h)
1184 dict_free_all(h, 0, 0);
1187 void dict_clear(dict_t*h)
1189 dict_free_all(h, 1, 0);
1192 void dict_destroy_shallow(dict_t*dict)
1194 dict_clear_shallow(dict);
1198 void dict_destroy(dict_t*dict)
1204 // ------------------------------- map_t --------------------------------------
1206 typedef struct _map_internal_t
1211 void map_init(map_t*map)
1214 map->internal = (map_internal_t*)rfx_calloc(sizeof(map_internal_t));
1215 m = (map_internal_t*)map->internal;
1216 dict_init(&m->d, INITIAL_SIZE);
1218 void map_put(map_t*map, string_t t1, string_t t2)
1220 map_internal_t*m = (map_internal_t*)map->internal;
1222 char* s1 = string_cstr(&t1);
1223 dict_put2(&m->d, s1, (void*)string_cstr(&t2));
1226 const char* map_lookup(map_t*map, const char*name)
1228 map_internal_t*m = (map_internal_t*)map->internal;
1229 const char*value = dict_lookup(&m->d, name);
1232 static void freestring(void*data)
1236 static void dumpmapentry(void*data, const void*key, void*value)
1238 FILE*fi = (FILE*)data;
1239 fprintf(fi, "%s=%s\n", key, (char*)value);
1241 void map_dump(map_t*map, FILE*fi, const char*prefix)
1244 map_internal_t*m = (map_internal_t*)map->internal;
1245 dict_foreach_keyvalue(&m->d, dumpmapentry, fi);
1247 void map_clear(map_t*map)
1249 map_internal_t*m = (map_internal_t*)map->internal;
1250 dict_free_all(&m->d, 1, freestring);
1253 void map_destroy(map_t*map)
1259 // ------------------------------- array_t --------------------------------------
1261 array_t* array_new() {
1262 array_t*d = malloc(sizeof(array_t));
1263 memset(d, 0, sizeof(array_t));
1264 d->entry2pos = dict_new();
1267 array_t* array_new2(type_t*type) {
1268 array_t*d = malloc(sizeof(array_t));
1269 memset(d, 0, sizeof(array_t));
1270 d->entry2pos = dict_new2(type);
1273 void*array_getkey(array_t*array, int nr) {
1274 if(nr > array->num || nr<0) {
1275 printf("error: reference to element %d in array[%d]\n", nr, array->num);
1278 return array->d[nr].name;
1280 void*array_getvalue(array_t*array, int nr) {
1281 if(nr > array->num || nr<0) {
1282 printf("error: reference to element %d in array[%d]\n", nr, array->num);
1285 return array->d[nr].data;
1287 int array_append(array_t*array, const void*name, void*data) {
1288 while(array->size <= array->num) {
1291 array->d = malloc(sizeof(array_entry_t)*array->size);
1293 array->d = realloc(array->d, sizeof(array_entry_t)*array->size);
1297 dictentry_t*e = dict_put(array->entry2pos, name, (void*)(ptroff_t)(array->num+1));
1300 array->d[array->num].name = e->key;
1302 array->d[array->num].name = 0;
1304 array->d[array->num].data = (void*)data;
1305 return array->num++;
1307 int array_find(array_t*array, const void*name)
1309 int pos = (int)(ptroff_t)dict_lookup(array->entry2pos, name);
1312 int array_find2(array_t*array, const void*name, void*data)
1314 dict_t*h= array->entry2pos;
1315 dictentry_t*e = dict_get_slot(array->entry2pos, name);
1318 int index = ((int)(ptroff_t)e->data) - 1;
1319 if(h->key_type->equals(e->key, name) && array->d[index].data == data) {
1326 int array_update(array_t*array, const void*name, void*data) {
1327 int pos = array_find(array, name);
1329 array->d[pos].data = data;
1332 return array_append(array, name, data);
1334 int array_append_if_new(array_t*array, const void*name, void*data) {
1335 int pos = array_find(array, name);
1338 return array_append(array, name, data);
1340 void array_free(array_t*array) {
1341 dict_destroy(array->entry2pos);
1343 free(array->d);array->d = 0;
1348 // ------------------------------- list_t --------------------------------------
1351 typedef struct _listinfo {
1353 struct _commonlist*last;
1356 typedef struct _commonlist {
1358 struct _commonlist*next;
1362 int list_length_(void*_list)
1364 commonlist_t*l = (commonlist_t*)_list;
1367 return l->info[0].size;
1369 void list_concat_(void*_l1, void*_l2)
1371 commonlist_t**l1 = (commonlist_t**)_l1;
1372 commonlist_t**l2 = (commonlist_t**)_l2;
1377 (*l1)->info[0].last->next = *l2;
1378 (*l1)->info[0].last = (*l2)->info[0].last;
1379 (*l1)->info[0].size += (*l2)->info[0].size;
1383 void list_append_(void*_list, void*entry)
1385 commonlist_t**list = (commonlist_t**)_list;
1386 commonlist_t* n = 0;
1388 n = (commonlist_t*)malloc(sizeof(commonlist_t)+sizeof(listinfo_t));
1390 (*list)->info[0].size = 0;
1392 n = malloc(sizeof(commonlist_t));
1393 (*list)->info[0].last->next = n;
1397 (*list)->info[0].last = n;
1398 (*list)->info[0].size++;
1400 /* notice: prepending uses slighly more space than appending */
1401 void list_prepend_(void*_list, void*entry)
1403 commonlist_t**list = (commonlist_t**)_list;
1404 commonlist_t* n = (commonlist_t*)malloc(sizeof(commonlist_t)+sizeof(listinfo_t));
1406 commonlist_t* last = 0;
1408 last = (*list)->info[0].last;
1409 size = (*list)->info[0].size;
1414 (*list)->info[0].last = last;
1415 (*list)->info[0].size = size+1;
1417 void list_free_(void*_list)
1419 commonlist_t**list = (commonlist_t**)_list;
1420 commonlist_t*l = *list;
1422 commonlist_t*next = l->next;
1428 void list_deep_free_(void*_list)
1430 commonlist_t**list = (commonlist_t**)_list;
1431 commonlist_t*l = *list;
1433 commonlist_t*next = l->next;
1435 free(l->entry);l->entry=0;
1442 void*list_clone_(void*_list)
1444 commonlist_t*l = *(commonlist_t**)_list;
1448 commonlist_t*next = l->next;
1449 list_append_(&dest, l->entry);