#include "../gfxdevice.h"
#include "../mem.h"
#include "poly.h"
+#include "convert.h"
/* factor that determines into how many line fragments a spline is converted */
#define SUBFRACTION (2.4)
return s;
}
-static inline int32_t convert_coord(double x)
+static inline int32_t convert_coord(double x, double z)
{
/* we clamp to 31 bit instead of 32 bit because we use
a (x1-x2) shortcut when comparing coordinates
*/
+ x *= z;
if(x < -0x40000000) x = -0x40000000;
if(x > 0x3fffffff) x = 0x3fffffff;
return ceil(x);
}
-static inline void gfxpoly_add_edge(gfxpoly_t*poly, double _x1, double _y1, double _x2, double _y2)
-{
- int x1 = convert_coord(_x1);
- int y1 = convert_coord(_y1);
- int x2 = convert_coord(_x2);
- int y2 = convert_coord(_y2);
-
- if(x1!=x2 || y1!=y2) {
- edge_t*s = edge_new(x1, y1, x2, y2);
- s->next = poly->edges;
- poly->edges = s;
- }
-}
-
-static void convert_gfxline(gfxline_t*line, void*data, void(*moveto)(void*data, double x, double y), void(*lineto)(void*data, double x, double y), void(*setgridsize)(void*data, double g))
+static void convert_gfxline(gfxline_t*line, polywriter_t*w, double gridsize)
{
assert(!line || line[0].type == gfx_moveTo);
double lastx=0,lasty=0;
+ double z = 1.0 / gridsize;
while(line) {
if(line->type == gfx_moveTo) {
if(line->next && line->next->type != gfx_moveTo && (line->x!=lastx || line->y!=lasty)) {
- moveto(data, line->x, line->y);
+ w->moveto(w, convert_coord(line->x,z), convert_coord(line->y,z));
}
} else if(line->type == gfx_lineTo) {
- lineto(data, line->x, line->y);
+ w->lineto(w, convert_coord(line->x,z), convert_coord(line->y,z));
} else if(line->type == gfx_splineTo) {
int parts = (int)(sqrt(fabs(line->x-2*line->sx+lastx) +
fabs(line->y-2*line->sy+lasty))*SUBFRACTION);
double t = (double)i*stepsize;
double sx = (line->x*t*t + 2*line->sx*t*(1-t) + lastx*(1-t)*(1-t));
double sy = (line->y*t*t + 2*line->sy*t*(1-t) + lasty*(1-t)*(1-t));
- lineto(data, sx, sy);
+ w->lineto(w, convert_coord(sx,z), convert_coord(sy,z));
}
- lineto(data, line->x, line->y);
+ w->lineto(w, convert_coord(line->x,z), convert_coord(line->y,z));
}
lastx = line->x;
lasty = line->y;
}
}
-static void convert_file(const char*filename, void*data, void(*moveto)(void*data, double x, double y), void(*lineto)(void*data, double x, double y),void(*setgridsize)(void*data, double gridsize))
+static void convert_file(const char*filename, polywriter_t*w, double gridsize)
{
FILE*fi = fopen(filename, "rb");
if(!fi) {
perror(filename);
}
+ double z = 1.0 / gridsize;
int count = 0;
double g = 0;
double lastx=0,lasty=0;
char s[256];
if(sscanf(line, "%lf %lf %s", &x, &y, &s) == 3) {
if(s && !strcmp(s,"moveto")) {
- moveto(data, x, y);
+ w->moveto(w, convert_coord(x,z), convert_coord(y,z));
count++;
} else if(s && !strcmp(s,"lineto")) {
- lineto(data, x, y);
+ w->lineto(w, convert_coord(x,z), convert_coord(y,z));
count++;
} else {
fprintf(stderr, "invalid command: %s\n", s);
}
} else if(sscanf(line, "%% gridsize %lf", &g) == 1) {
- setgridsize(data, g);
+ gridsize = g;
+ z = 1.0 / gridsize;
+ w->setgridsize(w, g);
}
free(line);
}
typedef struct _stdpoly {
gfxpoly_t*poly;
double lastx,lasty;
- double z;
} stdpoly_t;
-static void stdmoveto(void*data, double x, double y)
+
+static void stdmoveto(polywriter_t*w, int x, int y)
{
- stdpoly_t*d = (stdpoly_t*)data;
- x *= d->z;
- y *= d->z;
+ stdpoly_t*d = (stdpoly_t*)w->internal;
d->lastx = x;d->lasty = y;
}
-static void stdlineto(void*data, double x, double y)
+static void stdlineto(polywriter_t*w, int x, int y)
{
- stdpoly_t*d = (stdpoly_t*)data;
- x *= d->z;
- y *= d->z;
- gfxpoly_add_edge(d->poly, d->lastx, d->lasty, x, y);
+ stdpoly_t*d = (stdpoly_t*)w->internal;
+ int x1 = d->lastx;
+ int y1 = d->lasty;
+ int x2 = x;
+ int y2 = y;
+ if(x1!=x2 || y1!=y2) {
+ edge_t*s = edge_new(x1, y1, x2, y2);
+ s->next = d->poly->edges;
+ d->poly->edges = s;
+ }
d->lastx = x;d->lasty = y;
}
-static void stdsetgridsize(void*data, double gridsize)
+static void stdsetgridsize(polywriter_t*w, double gridsize)
{
- stdpoly_t*d = (stdpoly_t*)data;
+ stdpoly_t*d = (stdpoly_t*)w->internal;
d->poly->gridsize = gridsize;
}
-gfxpoly_t* gfxpoly_from_gfxline(gfxline_t*line, double gridsize)
+static void* stdfinish(polywriter_t*w)
{
- stdpoly_t data;
- data.poly = gfxpoly_new(gridsize);
- data.z = 1.0 / gridsize;
- data.lastx = data.lasty = 0;
- convert_gfxline(line, &data, stdmoveto, stdlineto, stdsetgridsize);
- return data.poly;
+ stdpoly_t*d = (stdpoly_t*)w->internal;
+ gfxpoly_t*poly = d->poly;
+ free(w->internal);w->internal = 0;
+ return poly;
}
-gfxpoly_t* gfxpoly_from_file(const char*filename, double gridsize)
+void gfxpolywriter_init(polywriter_t*w)
{
- stdpoly_t data;
- data.poly = gfxpoly_new(gridsize);
- data.z = 1.0 / gridsize;
- data.lastx = data.lasty = 0;
- convert_file(filename, &data, stdmoveto, stdlineto, stdsetgridsize);
- return data.poly;
+ w->moveto = stdmoveto;
+ w->lineto = stdlineto;
+ w->setgridsize = stdsetgridsize;
+ w->finish = stdfinish;
+ stdpoly_t*data = w->internal = malloc(sizeof(stdpoly_t));
+ data->poly = gfxpoly_new(1.0);
+ data->lastx = 0;
+ data->lasty = 0;
}
typedef struct _compactpoly {
gfxcompactpoly_t*poly;
point_t last;
- double z;
int strokes_size;
point_t*points;
int num_points;
int points_size;
segment_dir_t dir;
+ char new;
} compactpoly_t;
void finish_segment(compactpoly_t*data)
if(data->poly->num_strokes == data->strokes_size) {
data->strokes_size <<= 1;
assert(data->strokes_size > data->poly->num_strokes);
- data->poly->strokes = rfx_realloc(data->poly->strokes, sizeof(gfxstroke_t)*data->strokes_size);
+ data->poly->strokes = rfx_realloc(data->poly->strokes, sizeof(gfxpolystroke_t)*data->strokes_size);
}
point_t*p = malloc(sizeof(point_t)*data->num_points);
- gfxstroke_t*s = &data->poly->strokes[data->poly->num_strokes];
+ gfxpolystroke_t*s = &data->poly->strokes[data->poly->num_strokes];
s->num_points = data->num_points;
s->dir = data->dir;
s->points = p;
+ assert(data->dir != DIR_UNKNOWN);
if(data->dir == DIR_UP) {
int t;
int s = data->num_points;
} else {
memcpy(p, data->points, sizeof(point_t)*data->num_points);
}
+#ifdef CHECKS
+ int t;
+ for(t=0;t<data->num_points-1;t++) {
+ assert(p[t].y<=p[t+1].y);
+ }
+#endif
data->poly->num_strokes++;
}
-static void compactmoveto(void*_data, double _x, double _y)
+static void compactmoveto(polywriter_t*w, int x, int y)
{
- compactpoly_t*data = (compactpoly_t*)_data;
- data->dir = DIR_UNKNOWN;
+ compactpoly_t*data = (compactpoly_t*)w->internal;
point_t p;
- p.x = convert_coord(_x);
- p.y = convert_coord(_y);
+ p.x = x;
+ p.y = y;
+ if(p.x != data->last.x || p.y != data->last.y) {
+ data->new = 1;
+ }
data->last = p;
}
-static void compactlineto(void*_data, double _x, double _y)
+static void compactlineto(polywriter_t*w, int x, int y)
{
- compactpoly_t*data = (compactpoly_t*)_data;
+ compactpoly_t*data = (compactpoly_t*)w->internal;
point_t p;
- p.x = convert_coord(_x);
- p.y = convert_coord(_y);
- if(p.y < data->last.y && data->dir != DIR_UP ||
- p.y >= data->last.y && data->dir != DIR_DOWN) {
+ p.x = x;
+ p.y = y;
+ if(p.x == data->last.x && p.y == data->last.y)
+ return;
+
+ if(p.y < data->last.y && data->dir != DIR_UP ||
+ p.y > data->last.y && data->dir != DIR_DOWN ||
+ data->new) {
finish_segment(data);
data->dir = p.y > data->last.y ? DIR_DOWN : DIR_UP;
data->points[0] = data->last;
data->num_points = 1;
}
+
if(data->points_size == data->num_points) {
data->points_size <<= 1;
assert(data->points_size > data->num_points);
data->points = rfx_realloc(data->points, sizeof(point_t)*data->points_size);
}
data->points[data->num_points++] = p;
+ data->last = p;
}
-static void compactsetgridsize(void*data, double gridsize)
+static void compactsetgridsize(polywriter_t*w, double gridsize)
{
- compactpoly_t*d = (compactpoly_t*)data;
+ compactpoly_t*d = (compactpoly_t*)w->internal;
d->poly->gridsize = gridsize;
}
-static void compactinit(compactpoly_t*data, double gridsize)
+/*static int compare_stroke(const void*_s1, const void*_s2)
+{
+ gfxpolystroke_t*s1 = (gfxpolystroke_t*)_s1;
+ gfxpolystroke_t*s2 = (gfxpolystroke_t*)_s2;
+ return s1->points[0].y - s2->points[0].y;
+}*/
+static void*compactfinish(polywriter_t*w)
+{
+ compactpoly_t*data = (compactpoly_t*)w->internal;
+ finish_segment(data);
+ data->poly->strokes = (gfxpolystroke_t*)rfx_realloc(data->poly->strokes, sizeof(gfxpolystroke_t)*data->poly->num_strokes);
+ //qsort(data->poly->strokes, data->poly->num_strokes, sizeof(gfxpolystroke_t), compare_stroke);
+ free(data->points);
+ gfxcompactpoly_t*poly = data->poly;
+ free(w->internal);w->internal = 0;
+ return (void*)poly;
+}
+void gfxcompactpolywriter_init(polywriter_t*w)
{
+ w->moveto = compactmoveto;
+ w->lineto = compactlineto;
+ w->setgridsize = compactsetgridsize;
+ w->finish = compactfinish;
+ compactpoly_t*data = w->internal = rfx_calloc(sizeof(compactpoly_t));
data->poly = rfx_calloc(sizeof(gfxcompactpoly_t));
- data->poly->gridsize = gridsize;
- data->z = 1.0 / gridsize;
+ data->poly->gridsize = 1.0;
data->last.x = data->last.y = 0;
data->strokes_size = 16;
data->num_points = 0;
data->points_size = 16;
+ data->new = 1;
data->dir = DIR_UNKNOWN;
data->points = (point_t*)rfx_alloc(sizeof(point_t)*data->points_size);
- data->poly->strokes = (gfxstroke_t*)rfx_alloc(sizeof(gfxstroke_t)*data->strokes_size);
+ data->poly->strokes = (gfxpolystroke_t*)rfx_alloc(sizeof(gfxpolystroke_t)*data->strokes_size);
}
-static gfxcompactpoly_t*compactfinish(compactpoly_t*data)
+
+gfxpoly_t* gfxpoly_from_gfxline(gfxline_t*line, double gridsize)
{
- finish_segment(data);
- data->poly->strokes = (gfxstroke_t*)rfx_realloc(data->poly->strokes, sizeof(gfxstroke_t)*data->poly->num_strokes);
- free(data->points);
- return data->poly;
+ polywriter_t w;
+ gfxpolywriter_init(&w);
+ w.setgridsize(&w, gridsize);
+ convert_gfxline(line, &w, gridsize);
+ return w.finish(&w);
+}
+gfxpoly_t* gfxpoly_from_file(const char*filename, double gridsize)
+{
+ polywriter_t w;
+ gfxpolywriter_init(&w);
+ w.setgridsize(&w, gridsize);
+ convert_file(filename, &w, gridsize);
+ return w.finish(&w);
}
gfxcompactpoly_t* gfxcompactpoly_from_gfxline(gfxline_t*line, double gridsize)
{
- compactpoly_t data;
- compactinit(&data, gridsize);
- data.poly->gridsize = gridsize;
- convert_gfxline(line, &data, compactmoveto, compactlineto, compactsetgridsize);
- return compactfinish(&data);
+ polywriter_t writer;
+ gfxcompactpolywriter_init(&writer);
+ writer.setgridsize(&writer, gridsize);
+ convert_gfxline(line, &writer, gridsize);
+ return (gfxcompactpoly_t*)writer.finish(&writer);
}
gfxcompactpoly_t* gfxcompactpoly_from_file(const char*filename, double gridsize)
{
- compactpoly_t data;
- compactinit(&data, gridsize);
- data.poly->gridsize = gridsize;
- convert_file(filename, &data, compactmoveto, compactlineto, compactsetgridsize);
- return compactfinish(&data);
+ polywriter_t writer;
+ gfxcompactpolywriter_init(&writer);
+ writer.setgridsize(&writer, gridsize);
+ convert_file(filename, &writer, gridsize);
+ return (gfxcompactpoly_t*)writer.finish(&writer);
+}
+gfxpoly_t*gfxpoly_from_gfxcompactpoly(gfxcompactpoly_t*poly)
+{
+ int s,t;
+ int pass;
+ gfxpoly_t*poly2 = gfxpoly_new(poly->gridsize);
+ for(t=0;t<poly->num_strokes;t++) {
+ gfxpolystroke_t*stroke = &poly->strokes[t];
+ for(s=0;s<stroke->num_points-1;s++) {
+ point_t a = stroke->points[s];
+ point_t b = stroke->points[s+1];
+ edge_t*e = 0;
+ if(stroke->dir == DIR_UP) {
+ e = edge_new(a.x,a.y,b.x,b.y);
+ } else {
+ e = edge_new(b.x,b.y,a.x,a.y);
+ }
+ e->style = stroke->fs;
+ e->next = poly2->edges;
+ poly2->edges = e;
+ }
+ }
+ return poly2;
}
-void gfxcompactpoly_free(gfxcompactpoly_t*poly)
+void gfxcompactpoly_destroy(gfxcompactpoly_t*poly)
{
int t;
for(t=0;t<poly->num_strokes;t++) {
#ifndef __poly_convert_h__
#define __poly_convert_h__
+#include "../gfxdevice.h"
#include "poly.h"
gfxpoly_t* gfxpoly_from_gfxline(gfxline_t*line, double gridsize);
gfxpoly_t* gfxpoly_from_file(const char*filename, double gridsize);
+gfxpoly_t* gfxpoly_from_gfxcompactpoly(gfxcompactpoly_t*poly);
+
+typedef struct _polywriter
+{
+ void(*moveto)(struct _polywriter*, int x, int y);
+ void(*lineto)(struct _polywriter*, int x, int y);
+ void(*setgridsize)(struct _polywriter*, double g);
+ void*(*finish)(struct _polywriter*);
+ void*internal;
+} polywriter_t;
+
+void gfxpolywriter_init(polywriter_t*w);
+void gfxcompactpolywriter_init(polywriter_t*w);
+
gfxcompactpoly_t* gfxcompactpoly_from_gfxline(gfxline_t*line, double gridsize);
gfxcompactpoly_t* gfxcompactpoly_from_file(const char*filename, double gridsize);
-void gfxcompactpoly_free(gfxcompactpoly_t*poly);
+void gfxcompactpoly_destroy(gfxcompactpoly_t*poly);
#endif //__poly_convert_h__
#include "active.h"
#include "xrow.h"
#include "wind.h"
+#include "convert.h"
-static gfxpoly_t*current_polygon = 0;
+static gfxcompactpoly_t*current_polygon = 0;
void gfxpoly_fail(char*expr, char*file, int line, const char*function)
{
if(!current_polygon) {
}
void*md5 = init_md5();
-
- edge_t* s = current_polygon->edges;
- while(s) {
- update_md5(md5, (unsigned char*)&s->a.x, sizeof(s->a.x));
- update_md5(md5, (unsigned char*)&s->a.y, sizeof(s->a.y));
- update_md5(md5, (unsigned char*)&s->b.x, sizeof(s->b.x));
- update_md5(md5, (unsigned char*)&s->b.y, sizeof(s->b.y));
- s = s->next;
+
+ int s,t;
+ for(s=0;s<current_polygon->num_strokes;s++) {
+ gfxpolystroke_t*stroke = ¤t_polygon->strokes[s];
+ for(t=0;t<stroke->num_points;t++) {
+ update_md5(md5, (unsigned char*)&stroke->points[t].x, sizeof(stroke->points[t].x));
+ update_md5(md5, (unsigned char*)&stroke->points[t].y, sizeof(stroke->points[t].y));
+ }
}
unsigned char h[16];
char filename[32+4+1];
fprintf(stderr, "assert(%s) failed in %s in line %d: %s\n", expr, file, line, function);
fprintf(stderr, "I'm saving a debug file \"%s\" to the current directory.\n", filename);
- gfxpoly_save(current_polygon, filename);
+ gfxcompactpoly_save(current_polygon, filename);
exit(1);
}
int32_t y;
actlist_t*actlist;
heap_t*queue;
- edge_t*output;
xrow_t*xrow;
windrule_t*windrule;
windcontext_t*context;
segment_t*ending_segments;
+ polywriter_t writer;
#ifdef CHECKS
dict_t*seen_crossings; //list of crossing we saw so far
dict_t*intersecting_segs; //list of segments intersecting in this scanline
#endif
} status_t;
+typedef struct _event {
+ eventtype_t type;
+ point_t p;
+ segment_t*s1;
+ segment_t*s2;
+} event_t;
+
/* compare_events_simple differs from compare_events in that it schedules
events from left to right regardless of type. It's only used in horizontal
processing, in order to get an x-wise sorting of the current scanline */
}
int gfxpoly_size(gfxpoly_t*poly)
{
- edge_t* s = poly->edges;
- int t=0;
- while(s) {
- s = s->next;t++;
+ edge_t*e = poly->edges;
+ int count = 0;
+ while(e) {
+ count++;
+ e = e->next;
}
- return t;
+ return count;
+}
+int gfxcompactpoly_size(gfxcompactpoly_t*poly)
+{
+ int s,t;
+ int edges = 0;
+ for(t=0;t<poly->num_strokes;t++) {
+ gfxpolystroke_t*stroke = &poly->strokes[t];
+ edges += stroke->num_points-1;
+ }
+ return edges;
}
char gfxpoly_check(gfxpoly_t*poly)
return 1;
}
+char gfxcompactpoly_check(gfxcompactpoly_t*poly)
+{
+ dict_t*d = dict_new2(&point_type);
+ int s,t;
+ for(t=0;t<poly->num_strokes;t++) {
+ gfxpolystroke_t*stroke = &poly->strokes[t];
+ for(s=0;s<stroke->num_points;s++) {
+ point_t p = stroke->points[s];
+ int num = (s>=1 && s<stroke->num_points-1)?2:1; // mid points are two points (start+end)
+ if(!dict_contains(d, &p)) {
+ dict_put(d, &p, (void*)(ptroff_t)num);
+ } else {
+ int count = (ptroff_t)dict_lookup(d, &p);
+ dict_del(d, &p);
+ count+=num;
+ dict_put(d, &p, (void*)(ptroff_t)count);
+ }
+ }
+ }
+ DICT_ITERATE_ITEMS(d, point_t*, p, void*, c) {
+ int count = (ptroff_t)c;
+ if(count&1) {
+ fprintf(stderr, "Point (%f,%f) occurs %d times\n", p->x*poly->gridsize, p->y*poly->gridsize, count);
+ dict_destroy(d);
+ return 0;
+ }
+ }
+ dict_destroy(d);
+ return 1;
+}
+
void gfxpoly_dump(gfxpoly_t*poly)
{
edge_t* s = poly->edges;
}
}
-gfxpoly_t* gfxpoly_save(gfxpoly_t*poly, const char*filename)
+void gfxcompactpoly_dump(gfxcompactpoly_t*poly)
+{
+ int s,t;
+ double g = poly->gridsize;
+ fprintf(stderr, "polyon %08x (gridsize: %f)\n", poly, poly->gridsize);
+ for(t=0;t<poly->num_strokes;t++) {
+ gfxpolystroke_t*stroke = &poly->strokes[t];
+ for(s=0;s<stroke->num_points-1;s++) {
+ point_t a = stroke->points[s];
+ point_t b = stroke->points[s+1];
+ fprintf(stderr, "%s(%f,%f) -> (%f,%f)%s\n", s?" ":"[", a.x*g, a.y*g, b.x*g, b.y*g,
+ s==stroke->num_points-2?"]":"");
+ }
+ }
+}
+
+void gfxcompactpoly_save(gfxcompactpoly_t*poly, const char*filename)
{
FILE*fi = fopen(filename, "wb");
fprintf(fi, "%% gridsize %f\n", poly->gridsize);
fprintf(fi, "%% begin\n");
- edge_t* s = poly->edges;
- while(s) {
- fprintf(fi, "%g setgray\n", s->b.y < s->a.y ? 0.7 : 0);
- fprintf(fi, "%d %d moveto\n", s->a.x, s->a.y);
- fprintf(fi, "%d %d lineto\n", s->b.x, s->b.y);
- fprintf(fi, "stroke\n");
- s = s->next;
+ int s,t;
+ for(t=0;t<poly->num_strokes;t++) {
+ gfxpolystroke_t*stroke = &poly->strokes[t];
+ for(s=0;s<stroke->num_points-1;s++) {
+ point_t a = stroke->points[s];
+ point_t b = stroke->points[s+1];
+ fprintf(fi, "%g setgray\n", stroke->dir==DIR_UP ? 0.7 : 0);
+ fprintf(fi, "%d %d moveto\n", a.x, a.y);
+ fprintf(fi, "%d %d lineto\n", b.x, b.y);
+ fprintf(fi, "stroke\n");
+ }
}
fprintf(fi, "showpage\n");
fclose(fi);
fprintf(stderr, "event: segment [%d] ends at (%d,%d)\n", e->s1->nr, e->p.x, e->p.y);
} else if(e->type == EVENT_CROSS) {
fprintf(stderr, "event: segment [%d] and [%d] intersect at (%d,%d)\n", e->s1->nr, e->s2->nr, e->p.x, e->p.y);
- } else if(e->type == EVENT_CORNER) {
- fprintf(stderr, "event: segment [%d] ends, segment [%d] starts, at (%d,%d)\n", e->s1->nr, e->s2->nr, e->p.x, e->p.y);
} else {
assert(0);
}
(double)s->delta.x / s->delta.y);
}
-static void segment_init(segment_t*s, int32_t x1, int32_t y1, int32_t x2, int32_t y2, int polygon_nr)
+static void segment_init(segment_t*s, int32_t x1, int32_t y1, int32_t x2, int32_t y2, int polygon_nr, segment_dir_t dir)
{
- if(y1<y2) {
- s->dir = DIR_DOWN;
- } else if(y1>y2) {
- int32_t x = x1;x1=x2;x2=x;
- int32_t y = y1;y1=y2;y2=y;
- s->dir = DIR_UP;
+ s->dir = dir;
+ if(y1!=y2) {
+ assert(y1<y2);
} else {
/* up/down for horizontal segments is handled by "rotating"
them 90° anticlockwise in screen coordinates (tilt your head to
- the right) */
+ the right)
+ TODO: is this still needed?
+ */
s->dir = DIR_UP;
if(x1>x2) {
s->dir = DIR_DOWN;
s->pos = s->a;
s->polygon_nr = polygon_nr;
-#define XDEBUG
-#ifdef XDEBUG
static int segment_count=0;
s->nr = segment_count++;
-#endif
#ifdef CHECKS
assert(LINE_EQ(s->a, s) == 0);
assert(LINE_EQ(p, s) >= 0);
#endif
+ /* TODO: make this int_type */
dict_init2(&s->scheduled_crossings, &ptr_type, 0);
}
-static segment_t* segment_new(int32_t x1, int32_t y1, int32_t x2, int32_t y2, int polygon_nr)
+static segment_t* segment_new(point_t a, point_t b, int polygon_nr, segment_dir_t dir)
{
segment_t*s = (segment_t*)rfx_calloc(sizeof(segment_t));
- segment_init(s, x1, y1, x2, y2, polygon_nr);
+ segment_init(s, a.x, a.y, b.x, b.y, polygon_nr, dir);
return s;
}
-static void segment_destroy(segment_t*s)
+static void segment_clear(segment_t*s)
{
dict_clear(&s->scheduled_crossings);
+}
+static void segment_destroy(segment_t*s)
+{
+ segment_clear(s);
free(s);
}
-static void gfxpoly_enqueue(edge_t*list, heap_t*queue, int polygon_nr)
+static void advance_stroke(heap_t*queue, gfxpolystroke_t*stroke, int polygon_nr, int pos)
{
- edge_t*l;
- for(l=list;l;l=l->next) {
- if(l->a.x == l->b.x &&
- l->a.y == l->b.y) {
- fprintf(stderr, "Warning: intersector input contains zero-length segments\n");
- continue;
- }
- segment_t*s = segment_new(l->a.x, l->a.y, l->b.x, l->b.y, polygon_nr);
+ while(pos < stroke->num_points-1) {
+ assert(stroke->points[pos].y <= stroke->points[pos+1].y);
+ segment_t*s = segment_new(stroke->points[pos], stroke->points[pos+1], polygon_nr, stroke->dir);
+ s->stroke = stroke;
+ s->stroke_pos = ++pos;
#ifdef DEBUG
- if(l->tmp)
- s->nr = l->tmp;
- fprintf(stderr, "[%d] (%d,%d) -> (%d,%d) %s\n",
- s->nr, s->a.x, s->a.y, s->b.x, s->b.y,
- s->dir==DIR_UP?"up":"down");
+ /*if(l->tmp)
+ s->nr = l->tmp;*/
+ fprintf(stderr, "[%d] (%d,%d) -> (%d,%d) %s (%d more to come)\n",
+ s->nr, s->a.x, s->a.y, s->b.x, s->b.y,
+ s->dir==DIR_UP?"up":"down", stroke->num_points - 1 - pos);
#endif
- event_t e = event_new();
- e.type = s->delta.y ? EVENT_START : EVENT_HORIZONTAL;
- e.p = s->a;
- e.s1 = s;
- e.s2 = 0;
- heap_put(queue, &e);
+ event_t e = event_new();
+ e.type = s->delta.y ? EVENT_START : EVENT_HORIZONTAL;
+ e.p = s->a;
+ e.s1 = s;
+ e.s2 = 0;
+ heap_put(queue, &e);
+ if(e.type != EVENT_HORIZONTAL) {
+ break;
+ }
+ }
+}
+
+static void gfxpoly_enqueue(gfxcompactpoly_t*p, heap_t*queue, int polygon_nr)
+{
+ int t;
+ for(t=0;t<p->num_strokes;t++) {
+ gfxpolystroke_t*stroke = &p->strokes[t];
+ assert(stroke->num_points > 1);
+
+#ifdef CHECKS
+ int s;
+ for(s=0;s<stroke->num_points-1;s++) {
+ assert(stroke->points[s].y <= stroke->points[s+1].y);
+ }
+#endif
+ advance_stroke(queue, stroke, polygon_nr, 0);
}
}
#endif
if(s1->maxx <= s2->minx) {
+#ifdef DEBUG
+ fprintf(stderr, "[%d] doesn't intersect with [%d] because: bounding boxes don't intersect\n", s1->nr, s2->nr);
+#endif
/* bounding boxes don't intersect */
return;
}
- if(dict_contains(&s1->scheduled_crossings, s2)) {
+ if(dict_contains(&s1->scheduled_crossings, (void*)(ptroff_t)s2->nr)) {
/* FIXME: this whole segment hashing thing is really slow */
- //fprintf(stderr, "Encountered crossing between [%d] and [%d] twice\n", s1->nr, s2->nr);
+#ifdef DEBUG
+ fprintf(stderr, "[%d] doesn't intersect with [%d] because: we already scheduled this intersection\n", s1->nr, s2->nr);
+// DICT_ITERATE_KEY(&s1->scheduled_crossings, void*, x) {
+// fprintf(stderr, "[%d]<->[%d]\n", s1->nr, (int)(ptroff_t)x);
+// }
+#endif
return; // we already know about this one
}
#endif
return;
} else {
+#ifdef DEBUG
+ fprintf(stderr, "[%d] doesn't intersect with [%d] because: they are parallel to each other\n", s1->nr, s2->nr);
+#endif
/* lines are parallel */
return;
}
double bsign2 = LINE_EQ(s1->b, s2);
if(asign2<0 && bsign2<0) {
// segment1 is completely to the left of segment2
+#ifdef DEBUG
+ fprintf(stderr, "[%d] doesn't intersect with [%d] because: [%d] is completely to the left of [%d]\n", s1->nr, s2->nr, s1->nr, s2->nr);
+#endif
return;
}
if(asign2>0 && bsign2>0) {
+ // TODO: can this ever happen?
+#ifdef DEBUG
+ fprintf(stderr, "[%d] doesn't intersect with [%d] because: [%d] is completely to the left of [%d]\n", s1->nr, s2->nr, s2->nr, s1->nr);
+#endif
// segment2 is completely to the left of segment1
return;
}
double bsign1 = LINE_EQ(s2->b, s1);
if(asign1<0 && bsign1<0) {
// segment1 is completely to the left of segment2
+#ifdef DEBUG
+ fprintf(stderr, "[%d] doesn't intersect with [%d] because: [%d] is completely to the left of [%d]\n", s1->nr, s2->nr, s1->nr, s2->nr);
+#endif
return;
}
if(asign1>0 && bsign1>0) {
// segment2 is completely to the left of segment1
+#ifdef DEBUG
+ fprintf(stderr, "[%d] doesn't intersect with [%d] because: [%d] is completely to the left of [%d]\n", s1->nr, s2->nr, s2->nr, s1->nr);
+#endif
return;
}
if(asign1==0) {
/* we insert into each other's intersection history because these segments might switch
places and we still want to look them up quickly after they did */
- dict_put(&s1->scheduled_crossings, s2, 0);
- dict_put(&s2->scheduled_crossings, s1, 0);
+ dict_put(&s1->scheduled_crossings, (void*)(ptroff_t)(s2->nr), 0);
+ dict_put(&s2->scheduled_crossings, (void*)(ptroff_t)(s1->nr), 0);
event_t e = event_new();
e.type = EVENT_CROSS;
#endif
// omit horizontal lines
if(s->pos.y != p.y) {
- edge_t*e = rfx_calloc(sizeof(edge_t));
-#ifdef DEBUG
- e->tmp = s->nr;
-#endif
- e->a = s->pos;
- e->b = p;
- assert(e->a.y != e->b.y);
- e->next = status->output;
- status->output = e;
+ point_t a = s->pos;
+ point_t b = p;
+ assert(a.y != b.y);
+ status->writer.moveto(&status->writer, a.x, a.y);
+ status->writer.lineto(&status->writer, b.x, b.y);
}
} else {
#ifdef DEBUG
fillstyle_t*fs_old = s->fs_out;
s->fs_out = status->windrule->diff(&wind, &s->wind);
+#ifdef DEBUG
+ fprintf(stderr, "[%d] %s/%d/%s/%s %s\n", s->nr, s->dir==DIR_UP?"up":"down", s->wind.wind_nr, s->wind.is_filled?"fill":"nofill", s->fs_out?"draw":"omit",
+ fs_old!=s->fs_out?"CHANGED":"");
+#endif
assert(!(!s->changed && fs_old!=s->fs_out));
s->changed = 0;
#ifdef CHECKS
s->fs_out_ok = 1;
#endif
-#ifdef DEBUG
- fprintf(stderr, "[%d] %s/%d/%s/%s %s\n", s->nr, s->dir==DIR_UP?"up":"down", s->wind.wind_nr, s->wind.is_filled?"fill":"nofill", s->fs_out?"draw":"omit",
- fs_old!=s->fs_out?"CHANGED":"");
-#endif
}
s = s->right;
}
{
switch(e->type) {
case EVENT_HORIZONTAL: {
+ segment_t*s = e->s1;
#ifdef DEBUG
event_dump(e);
#endif
- intersect_with_horizontal(status, e->s1);
- segment_destroy(e->s1);e->s1=0;
+ intersect_with_horizontal(status, s);
+ advance_stroke(status->queue, s->stroke, s->polygon_nr, s->stroke_pos);
+ segment_destroy(s);e->s1=0;
break;
}
case EVENT_END: {
/* schedule segment for xrow handling */
s->left = 0; s->right = status->ending_segments;
status->ending_segments = s;
+ advance_stroke(status->queue, s->stroke, s->polygon_nr, s->stroke_pos);
break;
}
case EVENT_START: {
schedule_crossing(status, left, s);
if(right)
schedule_crossing(status, s, right);
- schedule_endpoint(status, e->s1);
+ schedule_endpoint(status, s);
break;
}
case EVENT_CROSS: {
#endif
/* ignore this crossing for now (there are some line segments in between).
it'll get rescheduled as soon as the "obstacles" are gone */
- char del1 = dict_del(&e->s1->scheduled_crossings, e->s2);
- char del2 = dict_del(&e->s2->scheduled_crossings, e->s1);
+ char del1 = dict_del(&e->s1->scheduled_crossings, (void*)(ptroff_t)e->s2->nr);
+ char del2 = dict_del(&e->s2->scheduled_crossings, (void*)(ptroff_t)e->s1->nr);
assert(del1 && del2);
#ifdef CHECKS
point_t pair;
}
#endif
-static void add_horizontals(gfxpoly_t*poly, windrule_t*windrule, windcontext_t*context)
+static void add_horizontals(gfxcompactpoly_t*poly, windrule_t*windrule, windcontext_t*context)
{
/*
|..| |...........| | |
fprintf(stderr, "========================================================================\n");
#endif
heap_t* queue = heap_new(sizeof(event_t), compare_events_simple);
- gfxpoly_enqueue(poly->edges, queue, 0);
+ gfxpoly_enqueue(poly, queue, 0);
actlist_t* actlist = actlist_new();
event_t*e = heap_chopmax(queue);
+ int newstrokes_size = 4;
+ int num_newstrokes = 0;
+ gfxpolystroke_t*newstrokes = malloc(sizeof(gfxpolystroke_t)*newstrokes_size);
while(e) {
int32_t y = e->p.y;
int32_t x = 0;
fprintf(stderr, "%d) draw horizontal line from %d to %d\n", y, x, e->p.x);
#endif
assert(x<e->p.x);
- edge_t*l= malloc(sizeof(edge_t));
- l->a.y = l->b.y = y;
+
+ if(num_newstrokes == newstrokes_size) {
+ newstrokes_size = (newstrokes_size)<<1;
+ newstrokes = rfx_realloc(newstrokes, sizeof(gfxpolystroke_t)*newstrokes_size);
+ }
+ gfxpolystroke_t*stroke = &newstrokes[num_newstrokes++];
+ stroke->num_points = 2;
+ stroke->points = malloc(sizeof(point_t)*2);
+ stroke->dir = DIR_UP; // FIXME
+ stroke->fs = 0;
+ point_t a,b;
+ a.y = b.y = y;
/* we draw from low x to high x so that left/right fillstyles add up
(because the horizontal line's fill style controls the area *below* the line)
*/
- l->a.x = e->p.x;
- l->b.x = x;
- l->next = poly->edges;
- poly->edges = l;
+ a.x = e->p.x;
+ b.x = x;
+ stroke->points[0] = a;
+ stroke->points[1] = b;
#ifdef CHECKS
/* the output should always be intersection free polygons, so check this horizontal
line isn't hacking through any segments in the active list */
- segment_t* start = actlist_find(actlist, l->b, l->b);
- segment_t* s = actlist_find(actlist, l->a, l->a);
+ segment_t* start = actlist_find(actlist, b, b);
+ segment_t* s = actlist_find(actlist, a, a);
while(s!=start) {
assert(s->a.y == y || s->b.y == y);
s = s->left;
case EVENT_END: {
left = actlist_left(actlist, s);
actlist_delete(actlist, s);
+ advance_stroke(queue, s->stroke, s->polygon_nr, s->stroke_pos);
break;
}
default: assert(0);
assert(!fill); // check that polygon is not bleeding
}
+
+ poly->strokes = rfx_realloc(poly->strokes, sizeof(gfxpolystroke_t)*(num_newstrokes+poly->num_strokes));
+ memcpy(&poly->strokes[poly->num_strokes], newstrokes, sizeof(gfxpolystroke_t)*num_newstrokes);
+ poly->num_strokes += num_newstrokes;
+ free(newstrokes);
+
actlist_destroy(actlist);
heap_destroy(queue);
}
-gfxpoly_t* gfxpoly_process(gfxpoly_t*poly, windrule_t*windrule, windcontext_t*context)
+gfxpoly_t* gfxpoly_process(gfxcompactpoly_t*poly, windrule_t*windrule, windcontext_t*context)
{
current_polygon = poly;
heap_t* queue = heap_new(sizeof(event_t), compare_events);
- gfxpoly_enqueue(poly->edges, queue, /*polygon nr*/0);
+ gfxpoly_enqueue(poly, queue, /*polygon nr*/0);
status_t status;
memset(&status, 0, sizeof(status_t));
status.windrule = windrule;
status.context = context;
status.actlist = actlist_new();
+ gfxcompactpolywriter_init(&status.writer);
+ status.writer.setgridsize(&status.writer, poly->gridsize);
+
#ifdef CHECKS
status.seen_crossings = dict_new2(&point_type);
+ int lasty=heap_peek(queue)?((event_t*)heap_peek(queue))->p.y-1:0;
#endif
status.xrow = xrow_new();
event_t*e = heap_chopmax(queue);
while(e) {
status.y = e->p.y;
+ assert(status.y>=lasty);
#ifdef CHECKS
status.intersecting_segs = dict_new2(&ptr_type);
status.segs_with_point = dict_new2(&ptr_type);
heap_destroy(queue);
xrow_destroy(status.xrow);
- gfxpoly_t*p = gfxpoly_new(poly->gridsize);
- p->edges = status.output;
-
+ gfxcompactpoly_t*p = (gfxcompactpoly_t*)status.writer.finish(&status.writer);
add_horizontals(p, &windrule_evenodd, context); // output is always even/odd
- return p;
+ return gfxpoly_from_gfxcompactpoly(p);
}
#include <stdint.h>
#include "../q.h"
+#include "../types.h"
//#define DEBUG
#define CHECKS
#define SPLAY
typedef enum {DIR_UP, DIR_DOWN, DIR_UNKNOWN} segment_dir_t;
-typedef enum {EVENT_CROSS, EVENT_END, EVENT_CORNER, EVENT_START, EVENT_HORIZONTAL} eventtype_t;
+typedef enum {EVENT_CROSS, EVENT_END, EVENT_START, EVENT_HORIZONTAL} eventtype_t;
typedef enum {SLOPE_POSITIVE, SLOPE_NEGATIVE} slope_t;
typedef struct _point {
#define SEGNR(s) ((s)?(s)->nr:-1)
+typedef struct _gfxpolystroke {
+ segment_dir_t dir;
+ int num_points;
+ point_t*points;
+ fillstyle_t*fs;
+} gfxpolystroke_t;
+typedef struct _gfxcompactpoly {
+ double gridsize;
+ int num_strokes;
+ gfxpolystroke_t*strokes;
+} gfxcompactpoly_t;
+
typedef struct _segment {
point_t a;
point_t b;
int polygon_nr;
windstate_t wind;
- int nr;
+ ptroff_t nr;
#ifdef SPLAY
struct _segment*parent;
point_t pos;
+ gfxpolystroke_t*stroke;
+ int stroke_pos;
+
dict_t scheduled_crossings;
} segment_t;
edge_t*edges;
} gfxpoly_t;
-typedef struct _gfxstroke {
- segment_dir_t dir;
- int num_points;
- point_t*points;
- fillstyle_t*fs;
-} gfxstroke_t;
-typedef struct _gfxcompactpoly {
- double gridsize;
- int num_strokes;
- gfxstroke_t*strokes;
-} gfxcompactpoly_t;
-
void gfxpoly_fail(char*expr, char*file, int line, const char*function);
gfxpoly_t* gfxpoly_new(double gridsize);
-char gfxpoly_check(gfxpoly_t*poly);
-int gfxpoly_size(gfxpoly_t*poly);
-void gfxpoly_dump(gfxpoly_t*poly);
-gfxpoly_t* gfxpoly_save(gfxpoly_t*poly, const char*filename);
-gfxpoly_t* gfxpoly_process(gfxpoly_t*poly, windrule_t*windrule, windcontext_t*context);
-
-typedef struct _event {
- eventtype_t type;
- point_t p;
- segment_t*s1;
- segment_t*s2;
-} event_t;
+char gfxcompactpoly_check(gfxcompactpoly_t*poly);
+int gfxcompactpoly_size(gfxcompactpoly_t*poly);
+void gfxcompactpoly_dump(gfxcompactpoly_t*poly);
+void gfxcompactpoly_save(gfxcompactpoly_t*poly, const char*filename);
+gfxpoly_t* gfxpoly_process(gfxcompactpoly_t*poly, windrule_t*windrule, windcontext_t*context);
#ifndef CHECKS
#ifdef assert
buf->bbox = *bbox;
buf->zoom = zoom * polygon->gridsize;
int width8 = (buf->width+7) >> 3;
+ char bleeding = 0;
unsigned char* image = (unsigned char*)malloc(width8*buf->height);
memset(image, 0, width8*buf->height);
/* we're bleeding, fill over padding, too. */
fprintf(stderr, "Polygon %08x is bleeding in line %d\n", polygon, y);
fill_bitwise(line, lastx, width8*8);
+ assert(line[width8-1]&0x01);
+ bleeding = 1;
}
}
}
memset(&buf->lines[y], 0, sizeof(renderline_t));
}
+ if(bleeding) {
+ assert(!bitmap_ok(bbox, image));
+ }
free(buf->lines);buf->lines=0;
return image;
}
static inline max(double a, double b) {return a>b?a:b;}
static inline min(double a, double b) {return a<b?a:b;}
+static int adjust_x(int xmin, int xmax)
+{
+ xmax += 8;
+ while(((xmax - xmin)&0x07) != 0x04)
+ xmax++;
+ return xmax;
+}
+
intbbox_t intbbox_new(int x1, int y1, int x2, int y2)
{
intbbox_t b;
b.ymin = y1;
b.xmax = x2;
b.ymax = y2;
- b.width = x2-x1;
- b.height = y2-y1;
+ b.xmax = adjust_x(b.xmin, b.xmax);
+ b.width = b.xmax - b.xmin;
+ b.height = b.ymax - b.ymin;
return b;
}
b.xmin = b.xmax;
if(b.ymin > b.ymax)
b.ymin = b.ymax;
-
- b.xmax += 8;
- while(((b.xmax - b.xmin)&0x07) != 0x04)
- b.xmax++;
+
+ b.xmax = adjust_x(b.xmin, b.xmax);
b.width = b.xmax - b.xmin;
b.height = b.ymax - b.ymin;
{
int y;
int width8 = (bbox->width+7) >> 3;
- if((bbox->width&7) == 0)
- return 1;
for(y=0;y<bbox->height;y++) {
if(data[width8-1]&0x01)
return 0; //bleeding
c = crc32_add_byte(c, t^0x55);
int r = c%100;
b = gfxline_append(b, gfxline_makecircle(x,y,r,r));
+ //b = gfxline_append(b, gfxline_makerectangle(10,10,100,100));
}
return b;
}
m.tx = 400*1.41/2;
m.ty = 400*1.41/2;
gfxline_transform(b, &m);
- gfxpoly_t*poly = gfxpoly_from_gfxline(b, 0.05);
+ gfxcompactpoly_t*poly = gfxcompactpoly_from_gfxline(b, 0.05);
gfxpoly_t*poly2 = gfxpoly_process(poly, &windrule_evenodd, &onepolygon);
+ gfxcompactpoly_destroy(poly);
gfxpoly_destroy(poly2);
- gfxpoly_destroy(poly);
}
gfxline_free(b);
}
int test1(int argn, char*argv[])
{
gfxline_t*box1 = gfxline_makerectangle(50,50,150,150);
- // put box2 and box3 on top of each other *snicker*
gfxline_t*box2 = gfxline_makerectangle(100,100,200,200);
gfxline_t*box3 = gfxline_makerectangle(100,100,200,200);
gfxline_t*star = mkstar(50,50, 150,150);
b = gfxline_append(b, box1);
b = gfxline_append(b, box2);
b = gfxline_append(b, box3);
- //b = gfxline_append(b, star);
gfxmatrix_t matrix;
memset(&matrix, 0, sizeof(gfxmatrix_t));
//gfxline_transform(b, &matrix);
- gfxpoly_t*poly = gfxpoly_from_gfxline(b, 0.05);
+ gfxline_dump(b, stderr, "");
+
+ gfxcompactpoly_t*poly = gfxcompactpoly_from_gfxline(b, 0.05);
gfxline_free(box1);
gfxline_free(box2);
gfxline_free(box3);
gfxline_free(star);
- gfxpoly_dump(poly);
+ gfxcompactpoly_dump(poly);
gfxpoly_t*poly2 = gfxpoly_process(poly, &windrule_evenodd, &onepolygon);
+ gfxcompactpoly_destroy(poly);
gfxpoly_destroy(poly2);
- gfxpoly_destroy(poly);
+}
+
+static void test_conversion(gfxline_t*line, double gridsize)
+{
+ double zoom=1.0;
+ gfxcompactpoly_t*poly = gfxcompactpoly_from_gfxline(line, gridsize);
+ gfxpoly_t*poly1 = gfxpoly_from_gfxline(line, gridsize);
+ gfxpoly_t*poly2 = gfxpoly_from_gfxcompactpoly(poly);
+ assert(gfxpoly_check(poly1));
+ assert(gfxpoly_check(poly2));
+ assert(gfxcompactpoly_check(poly));
+ intbbox_t bbox = intbbox_from_polygon(poly1, zoom);
+ unsigned char*bitmap1 = render_polygon(poly1, &bbox, zoom, &windrule_evenodd, &onepolygon);
+ assert(bitmap_ok(&bbox, bitmap1));
+ unsigned char*bitmap2 = render_polygon(poly2, &bbox, zoom, &windrule_evenodd, &onepolygon);
+ assert(bitmap_ok(&bbox, bitmap2));
+ if(!compare_bitmaps(&bbox, bitmap1, bitmap2)) {
+ save_two_bitmaps(&bbox, bitmap1, bitmap2, "error.png");
+ assert(!"bitmaps don't match");
+ }
}
int test_square(int width, int height, int num, double gridsize, char bitmaptest)
line[num-1].x = line[0].x;
line[num-1].y = line[0].y;
line[num-1].next = 0;
+
+ test_conversion(line, gridsize);
- gfxpoly_t*poly = gfxpoly_from_gfxline(line, gridsize);
+ gfxcompactpoly_t*poly = gfxcompactpoly_from_gfxline(line, gridsize);
gfxline_free(line);
+ gfxpoly_t*poly1 = gfxpoly_from_gfxcompactpoly(poly);
windrule_t*rule = &windrule_circular;
gfxpoly_t*poly2 = gfxpoly_process(poly, rule, &onepolygon);
if(bitmaptest) {
intbbox_t bbox = intbbox_new(0, 0, width, height);
- unsigned char*bitmap1 = render_polygon(poly, &bbox, 1.0, rule, &onepolygon);
+ unsigned char*bitmap1 = render_polygon(poly1, &bbox, 1.0, rule, &onepolygon);
+ assert(bitmap_ok(&bbox, bitmap1));
unsigned char*bitmap2 = render_polygon(poly2, &bbox, 1.0, &windrule_evenodd, &onepolygon);
+ assert(bitmap_ok(&bbox, bitmap2));
if(!compare_bitmaps(&bbox, bitmap1, bitmap2)) {
save_two_bitmaps(&bbox, bitmap1, bitmap2, "error.png");
assert(!"bitmaps don't match");
}
}
+ gfxpoly_destroy(poly1);
gfxpoly_destroy(poly2);
- gfxpoly_destroy(poly);
+ gfxcompactpoly_destroy(poly);
}
int test2(int argn, char*argv[])
int t;
for(t=0;t<400;t++) {
+ fprintf(stderr, "%d\n", t);
test_square(400,400, 50, 0.05, 1);
test_square(200,3, 1000, 1.0, 0);
test_square(3,200, 1000, 1.0, 0);
gfxline_t*l = gfxline_clone(line);
gfxline_transform(l, &m);
+
+ test_conversion(l, 0.05);
- gfxpoly_t*poly = gfxpoly_from_gfxline(l, 0.05);
+ gfxcompactpoly_t*poly = gfxcompactpoly_from_gfxline(l, 0.05);
gfxpoly_t*poly2 = gfxpoly_process(poly, rule, &onepolygon);
tag = swf_InsertTag(tag, ST_DEFINESHAPE);
swf_ShapeSetEnd(tag);
swf_ShapeFree(s);
- gfxpoly_destroy(poly);
+ gfxcompactpoly_destroy(poly);
gfxpoly_destroy(poly2);
gfxline_free(l);
filename = argv[1];
windrule_t*rule = &windrule_evenodd;
- gfxpoly_t*poly = gfxpoly_from_file(filename, 1.0);//0.01);
+ gfxcompactpoly_t*poly = gfxcompactpoly_from_file(filename, 1.0);//0.01);
if(argn!=2)
free(filename);
double zoom = 1.0;
- if(!gfxpoly_check(poly)) {
+ if(!gfxcompactpoly_check(poly)) {
printf("bad polygon\n");
continue;
}
+ gfxpoly_t*poly1 = gfxpoly_from_gfxcompactpoly(poly);
gfxpoly_t*poly2 = gfxpoly_process(poly, rule, &onepolygon);
int pass;
for(pass=0;pass<2;pass++) {
- intbbox_t bbox = intbbox_from_polygon(poly, zoom);
- unsigned char*bitmap1 = render_polygon(poly, &bbox, zoom, rule, &onepolygon);
+ intbbox_t bbox = intbbox_from_polygon(poly1, zoom);
+ unsigned char*bitmap1 = render_polygon(poly1, &bbox, zoom, rule, &onepolygon);
unsigned char*bitmap2 = render_polygon(poly2, &bbox, zoom, &windrule_evenodd, &onepolygon);
if(!bitmap_ok(&bbox, bitmap1) || !bitmap_ok(&bbox, bitmap2)) {
save_two_bitmaps(&bbox, bitmap1, bitmap2, "error.png");
free(bitmap2);
// second pass renders the 90° rotated version
- rotate90(poly);
+ rotate90(poly1);
rotate90(poly2);
}
- gfxpoly_destroy(poly);
+ gfxpoly_destroy(poly1);
gfxpoly_destroy(poly2);
+ gfxcompactpoly_destroy(poly);
if(argn==2)
break;
}
//gfxcompactpoly_t*c = gfxcompactpoly_from_gfxline(line, 0.05);
//gfxcompactpoly_free(c);
- gfxpoly_t*poly = gfxpoly_from_gfxline(line, 0.05);
+ gfxcompactpoly_t*poly = gfxcompactpoly_from_gfxline(line, 0.05);
- gfxline_dump(line, stderr, "");
- gfxpoly_dump(poly);
+ //gfxline_dump(line, stderr, "");
+ //gfxcompactpoly_dump(poly);
- if(gfxpoly_size(poly)>100000) {
- fprintf(stderr, "%d segments (skipping)\n", gfxpoly_size(poly));
+ if(gfxcompactpoly_size(poly)>100000) {
+ fprintf(stderr, "%d segments (skipping)\n", gfxcompactpoly_size(poly));
return;
} else {
//fprintf(stderr, "%d segments\n", gfxpoly_size(poly));
}
- if(!gfxpoly_check(poly)) {
- gfxpoly_destroy(poly);
+ if(!gfxcompactpoly_check(poly)) {
+ gfxcompactpoly_destroy(poly);
fprintf(stderr, "bad polygon\n");
return;
}
windrule_t*rule = &windrule_evenodd;
+
+ gfxpoly_t*poly1 = gfxpoly_from_gfxcompactpoly(poly);
double zoom = 1.0;
- intbbox_t bbox = intbbox_from_polygon(poly, zoom);
- unsigned char*bitmap1 = render_polygon(poly, &bbox, zoom, rule, &onepolygon);
+ intbbox_t bbox = intbbox_from_polygon(poly1, zoom);
+ unsigned char*bitmap1 = render_polygon(poly1, &bbox, zoom, rule, &onepolygon);
if(!bitmap_ok(&bbox, bitmap1)) {
fprintf(stderr, "bad polygon or error in renderer\n");
return;
free(bitmap1);
free(bitmap2);
- gfxpoly_destroy(poly);
+ gfxpoly_destroy(poly1);
gfxpoly_destroy(poly2);
+ gfxcompactpoly_destroy(poly);
}
int extract_polygons_setparameter(gfxdevice_t*dev, const char*key, const char*value) {
return 0;
int main(int argn, char*argv[])
{
- test3(argn, argv);
+ test4(argn, argv);
}